Analysis of Variance

Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

Contents

- Motivating example
- Rationale of ANOVA
- Between-group and within-group variations
- Posthoc comparisons
- Summary

A motivating study ...

- Suppose that we are interested in the association between a gene polymorphism and glucose levels
- The response variable (outcome): glucose
- "Risk factor": the gene polymorphism, 6 genotypes:
 A, B, C, D, E, and F
- What can/should we do?

A motivating study ...

- Measure glucose levels in all individuals
- Classify the individuals into 6 genotypic groups
- Compare glucose levels among the 6 groups by unpaired t-test
- There would be 2^6 = 64 possible tests of hypothesis!
- The chance of finding at least one significant difference is 1 – (1 – 0.05)^64 = 0.962

A motivating study ...

- It would be nice to have one "catch all" test
 - Something which would tell us whether there is ANY difference among the 6 groups
 - If there is, we could then perform group to group comparisons to look for specific differences
 - Extension of the t-test

ANOVA: an extension of t-test

- Developed by Ronald A. Fisher, a brilliant statistician, geneticist, philosopher in the 1920s
- T-test compares means of two groups
- ANOVA compares means among *more than 2 groups*

ANOVA framework

 General idea behind ANOVA, comparing means of k groups (k > 2):

Null hypothesis H_0 : $\mu_1 = \mu_2 = ... = \mu_k$

Alternative hypothesis H_a: at least one difference

 P value from ANOVA answers the following question: "Is there ANY difference in the means among the groups?"

Logics of ANOVA

• For a set of *n* values of $X_i(X_1, X_2, X_3, ...)$ a **deviate** is the difference between an individual value and the mean:

 $D = X_i - M$

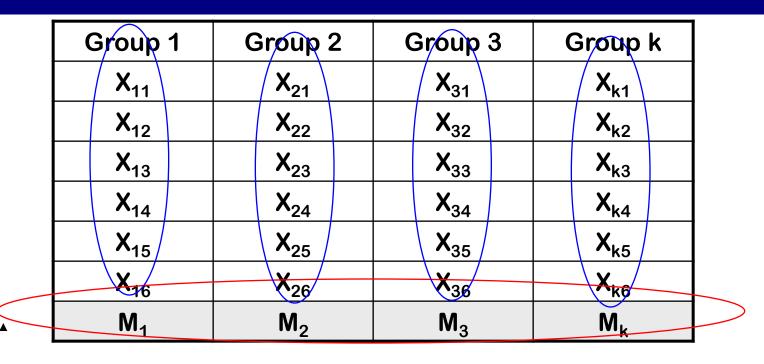
• A square deviate is the square of that quantity:

 $D^2 = (X_i - M)^2$

• The sum of squared deviates is the sum of all the squared deviated:

$$SS = (X_1 - M)^2 + (X_2 - M)^2 + (X_3 - M)^2 + \dots + (X_n - M)^2$$
$$= \sum_{i=1}^n (X_i - M)^2$$

Rationale behind ANOVA



- The variation in the sample means *between* groups is compared to the variation *within* a group.
- If the between group variation is a lot larger than the within group variation, that suggests there are some differences among the populations.

Between-group and within-group variations

A simulated example

Α	В	С
40	40	40
40	40	40
40	40	40

- Three groups of patients; each group has 3 patients.
- Let the individual values be X_{ij} , where i = A, B, C and j = 1,2,3.
- There are no differences between or within samples:

 $X_{ij} = M$

where M = 40.

A simulated example

Α	В	С
40 -2	40 +6	40 -4
40 -2	40 +6	40 -4
40 -2	40 +6	40 -4
		-
Α	В	С
38	46	36
38	46	36
38	46	36

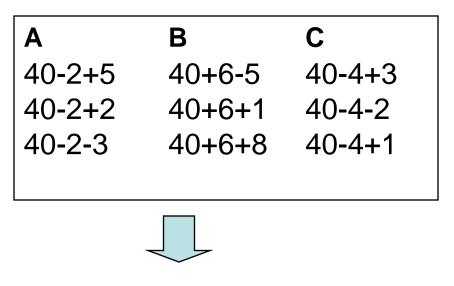
- There are differences
 between groups, but no differences within group.
- The model is now:

$$X_{ij} = M + \alpha_j$$

where *M* = 40; α_1 = -2, α_2 = 6 and α_3 = -4.

• Note that $\alpha_1 + \alpha_2 + \alpha_3 = 0$

A simulated example



Α	В	С		
43	41	39		
40	47	34		
35	54	37		
39.3	47.3	36.7		
overall mean: 41.1				

- In reality, there is always variation in a population, so that there is sampling error.
- The model now includes an error term:

$$X_{ij} = M + \alpha_j + e_{ij}$$

Effect of

treatment A: 39.3-41.1 = -1.8

treatment B: 47.3-41.1 = 5.8

treatment c: 36.7-41.1 = -4.4

ANOVA: model and assumption

• The model:

$$\boldsymbol{Y}_{ij} = \boldsymbol{\mu} + \boldsymbol{\alpha}_j + \boldsymbol{\varepsilon}_{ij}$$

Assumptions:

Normality

Independence

Homogeneity

• $Var(Y) = Var(M) + Var(\alpha) + Var(\varepsilon)$

= $Var(\alpha) + Var(\varepsilon)$

= Between-group + Within-group

Between-group variation

	Α	В	С
	43	41	39
	40	47	34
	35	54	37
Mean Overall r	39.3 nean: 41.1	47.3	36.7

- The sum of squares for difference between groups: $(39.3 - 41.1)^2 + (47.3 - 41.1)^2 + (36.7 - 41.1)^2 = 61.04$
- But the mean of each group is calculated from 3 observations. So the "true" sum of squares is: SSB = 3*(39.3 - 41.1)² + 3*(47.3 - 41.1)² + 3*(36.7 - 41.1)² = 184.8
- Degrees of freedom: (3 groups 1) = 2.

Within-group variation

	Α	В	С
	43	41	39
	40	47	34
	35	54	37
Mean	39.3	47.3	36.7
INICALL	29.2	47.5	30.7

- SS for group A: $SS_A = (43 39.3)^2 + (40 39.3)^2 + (35 39.3)^2 = 32.7$ SS for group B: $SS_B = (41 - 47.3)^2 + (47 - 47.3)^2 + (54 - 47.3)^2 = 84.7$ SS for group C: $SS_C = (39 - 36.7)^2 + (34 - 36.7)^2 + (37 - 36.7)^2 = 12.7$
- SS for within group: SSW = $SS_A + SS_B + SS_C = 130.0$
- Degrees of freedom: (3-1) + (3-1) + (3-1) = 6

ANOVA by R

43 41 39 40 47 04	Α	В	С
40 47 04	43	41	39
40 47 34	40	47	34
35 54 37	35	54	37

```
group <- c(1,1,1,2,2,2,3,3,3)
```

```
y <- c(43, 40, 35, 41, 47, 54, 39, 34, 37)
```

group <- as.factor(group)</pre>

```
analysis <- lm(y ~ group)
```

```
summary(analysis)
```

```
anova (analysis)
```

Summary of Variation

> anova(analysis)
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
group 2 184.889 92.444 4.2667 0.07037 .
Residuals 6 130.000 21.667
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimate of Treatment Effects

> summary(analysis)

• • •

Coefficients:

	Estimate Std.	Error	t value	Pr(> t)	
(Intercept)	39.333	2.687	14.636	6.39e-06	***
group2	8.000	3.801	2.105	0.080	
group3	-2.667	3.801	-0.702	0.509	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					
Residual standard error: 4.655 on 6 degrees of freedom					
Multiple R-Squared: 0.5872, Adjusted R-squared: 0.4495					
F-statistic: 4.267 on 2 and 6 DF, p-value: 0.07037					

Summary of ANOVA

Source of variation	Df	SS (sum of squares)	MS (mean squares)	F test
Between group	2	184.8	92.4	4.27
Within group	6	130.0	21.7	
Total	8	314.8		

• F (Fisher's) test

F = MSB / MSW = 92.4 / 21.7 = 4.27

- Under the null hypothesis (if H_0 is true), and if α = 0.95, the expected value of F (2, 6) is 5.14.
- Since F < 5.14, we conclude that there is NO significant difference between group means.

ANOVA using summary data

ANOVA using summary data

Galactose levels in 3 groups of patient

Crohn disease	Colitis	Control
1.343	1.264	1.809 2.850
1.393	1.314	1.926 2.964
1.420	1.399	2.283 2.973
1.641	1.605	2.384 3.171
1.897	2.385	2.447 3.257
2.160	2.511	2.479 3.271
2.169	2.514	2.495 3.288
2.279	2.767	2.525 3.358
2.890	2.827	2.541 3.643
	2.895	2.769 3.657
	3.011	

Between-group and within-group variations

Group	N	Mean	Variance
Crohn	9	1.91	0.265
Colitis	11	2.23	0.473
Control	20	2.80	0.277
All groups	40	2.44	

Between-group variation

 $SSB = 9(1.91 - 2.44)^2 + 11(2.23 - 2.44)^2 + 20(2.80 - 2.44)^2$

SSB = 5.605

• Within-group variation

SSW = (9-1)(0.265) + (11-1)(0.473) + (20-1)(0.277)

SSW = 12.113

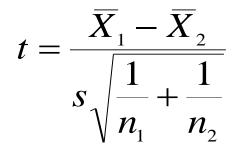
Summary of ANOVA

Group	Df	SS (sum of squares)	MS (mean squares)
Between group	2	5.65	2.825
Within group	37	12.113	0.327
Total	39		

- F (Fisher's) test
 - F = MSB / MSW = 2.825 / 0.327 = 8.64
 - Under the null hypothesis (if H_0 is true), and if α = 0.95, the expected value of F (2, 37) is 4.08.
 - Since F > 4.08, we conclude that there is at least one between group difference

Which groups are different? Posthoc comparison

Review of the t test



s is the *common standard deviation*, n_1 and n_2 are sample size for group 1 and 2, respectively.

Methods of multiple comparisons

- LSD (least significance difference) or Fisher's method
- Bonferroni's method
- Duncan's mutiple range test
- Scheffé
- Tukey's Honest Significant Difference
- Dunnett's test

Least significance difference

LSD is defined as: ۲

$$LSD = t_{\alpha/2m, n-k} \sqrt{MSW\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$
• Where

VVIIEIE

k is the number of groups

 n_1 and n_2 are the number of patients in group 1 and group 2

 α is the significance level (usually 0.05)

m is the number of possible comparisons

$$m = C_2^k = \frac{k!}{2!(k-2)!}$$

Decision rule: the difference is said to be statistically • significant if

$$\left| \overline{X}_1 - \overline{X}_2 \right| > LSD$$

Tukey's HSD procedure

• HSD = Honestly Significant Difference $Q = \frac{\overline{X}_{j} - \overline{X}_{k}}{\sqrt{MSW / \overline{n}}}$

where *n* = average sample size per group

• Decision rule: Q is compared with a theoretical Tukey's Studentized critical value to decide a statistical significance.

Tukey's studentized method

Studentized range statistic

$$Q_{k,n-k,\alpha} = \frac{\max \overline{X}_i - \min \overline{X}_i}{\sqrt{WMS}} \sqrt{N}$$

The difference between X1 and X2 is declared if

$$Q_{ij} = \frac{\left| \overline{X}_i - \overline{X}_j \right| \sqrt{N}}{\sqrt{WMS}} > Q_{k,n-k,\alpha}$$

• When the sample sizes are not the same,

 $N = 2n_i n_j / (n_i + n_j)$

Linear contrasts

In some cases, we are interested in *weighted* difference between groups, and linear contrasts offer a better way to make formal comparisons:

$$C_{1} = X_{1} - X_{2}$$

$$C_{2} = X_{2} - X_{4}$$

$$C_{3} = (X_{1} + X_{2})/2 - X_{4}$$

$$C_{4} = (X_{1} + X_{2})/2 - (X_{3} + X_{4})/2$$

$$C_{5} = (n_{1}X_{1} + n_{2}X_{2})/(n_{1} + n_{2}) - (n_{3}X_{3} + n_{4}X_{4})/(n_{3} + n_{4})$$

In general:
$$C_i = \sum c_i \overline{X}_i$$
 where the sum of $c_i = 0$

Linear contrasts

In general: $C_i = \sum c_i \overline{X}_i$ where the sum of $c_i = 0$ $c_1 c_2 c_3 c_4$ $C_1 = X_1 - X_2$ 1 -1 0 0 $C_2 = X_2 - X_4$ 0 1 0 -1 $C_3 = (X_1 + X_2)/2 - X_4$ 0.5 0.5 0 -1 $C_4 = (X_1 + X_2)/2 - (X_3 + X_4)/2$ 0.5 0.5 -0.5 -0.5 $C_5 = (n_1X_1 + n_2X_2)/(n_1 + n_2) - (n_3X_3 + n_4X_4)/(n_3 + n_4)$ $c_1 = n_1/(n_1 + n_2); c_2 = n_1/(n_1 + n_2); c_3 = -n_3/(n_3 + n_4); c_4 = -n_4/(n_3 + n_4)$

The standard error of C_i is:

$$SE(C_i) = \sqrt{MSW \times \sum \frac{c_i^2}{n_i}}$$

Scheffé's method

L = C / SE(C)

C is judged to be significantly different from 0 if L > S, where

$$S = \sqrt{(k-1)F_{k-1,N-k,\alpha}}$$

Bonferroni's method

L = C / SE(C)

C is judged to be significantly different from 0 if L > B, where

$$B = t_{1 - \alpha/2m, n-k}$$

Where *m* is the number of planned comparisons

Dunnett's test for comparison with a control group

- There are situations where we might want to compare our experimental groups to one control group.
- This results in fewer comparisons.
- The Dunnett's test is designed for this purpose

Dunnett's test for comparison with a control group

- Steps in calculation:
 - Arrange the group means in descending order $L_{i} = \frac{\overline{X_{i}} - \overline{X_{0}}}{\sqrt{WMS}} \sqrt{\frac{n_{0}n_{i}}{n_{0} + n_{i}}}$
 - Calculate contrast L_i
 - Where n_0 and n_i are sample size of the control and comparing group, respectively.
 - If L_i > theoretical L, the difference is declared "significant"

Which one is appropriate?

- LSD: control for per-comparison error rate
- Tukey's HSD: control for type I per-experiment error rate
- Bonferroni, Duncan's t-test: control for type I perexperiment error rate, but it has a higher type II error rate that Tukey's procedure.
- Scheffe's test: control for type I per-experiment error rate, but it has a higher type II error rate that Tukey's procedure.

Which one is appropriate?

- If all pairwise comparisons are of interest, the Tukey's procedure is preferred to Bonferroni's;
- If not all pairwise comparisons are to be considered, the Bonferroni's procedure may be better.
- The Bonferroni's procedure is better than Scheffé's when the number of contrasts to be estimated is about the same as the number of groups or less.
- In any given problem, the method with the narrowest confidence interval is preferred.

Multiple Comparisons: Tukey's Method

```
res <- aov(y ~ group)</pre>
```

TukeyHSD (res)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = y ~ group)

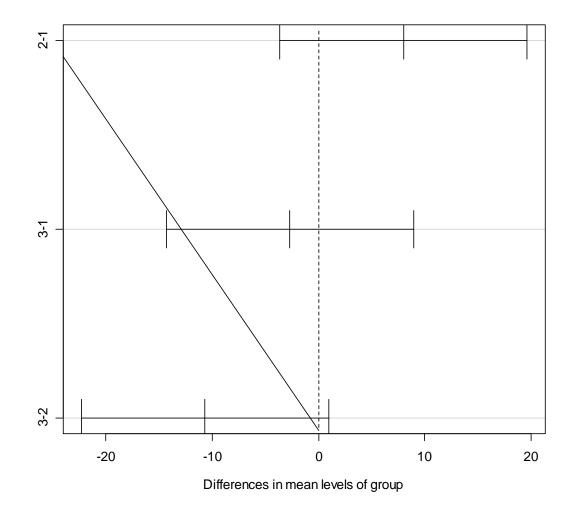
\$group

diff lwr upr p adj 2-1 8.000000 -3.661237 19.6612370 0.1689400 3-1 -2.666667 -14.327904 8.9945703 0.7714179 3-2 -10.666667 -22.327904 0.9945703 0.0692401

Multiple Comparisons: Tukey's Method

plot(TukeyHSD(res), ordered=T)

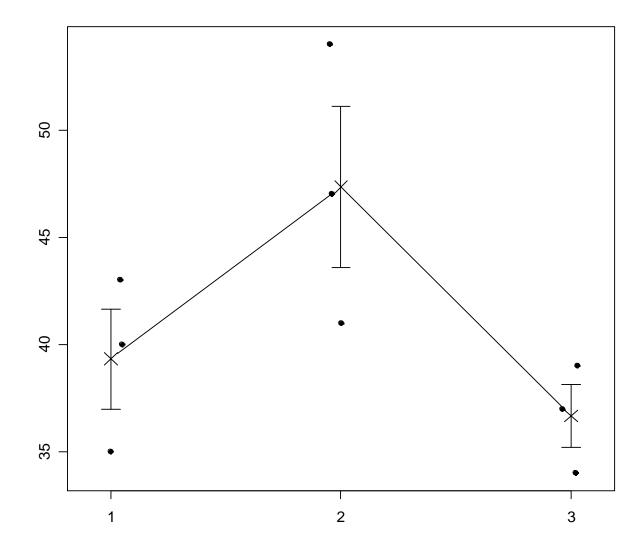
95% family-wise confidence level



Graphical Analysis

```
average <- tapply(y, group, mean)
std <- tapply(y, group, sd)</pre>
ss <- tapply(y, group, length)</pre>
sem <- std/sqrt(ss)</pre>
stripchart(y ~ group, "jitter", jit=0.05, pch=16,
  vert=TRUE)
arrows(1:3, average+sem, 1:3, average-sem, angle=90,
  code=3, length=0.1)
lines(1:3, average, pch=4, type="b", cex=2)
```

Graphical Analysis



Summary

- Unpaired t-test is suitable for comparing means of two independent groups.
- One-way ANOVA is used for comparing means of more than 2 groups.
- Analyses must be planned
 - Detailed enough to answer the question of interest
- Planned analyses must be carried out and reported

- Scientific integrity, honesty

Avoid "data snooping"

Factorial ANOVA

Variet		Pesticide				
У	1	2	3	4		
B1	29	50	43	53	175	
B2	41	58	42	73	214	
B3	66	85	63	85	305	
Tổng số	136	193	154	211	694	

Model:

product = a + b(variety) + g(pesticide) + e

Factorial ANOVA by R

Variety		Total			
	1				
B1	29	50	43	53	175
B2	41	58	42	73	214
B3	66	85	63	85	305
Tổng số	136	193	154	211	694

variety <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)
pesticide <- c(1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4)
product <- c(29,50,43,53,41,58,42,73,66,85,69,85)</pre>

variety <- as.factor(variety)
pesticide <- as.factor(pesticide)
data <- data.frame(variety, pesticide, product)</pre>

Factorial ANOVA by R

analysis <- aov(product ~ variety + pesticide)
anova(analysis)</pre>

```
Analysis of Variance Table

Response: product

Df Sum Sq Mean Sq F value Pr(>F)

variety 2 2225.17 1112.58 44.063 0.000259 ***

pesticide 3 1191.00 397.00 15.723 0.003008 **

Residuals 6 151.50 25.25

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Multiple Comparisons

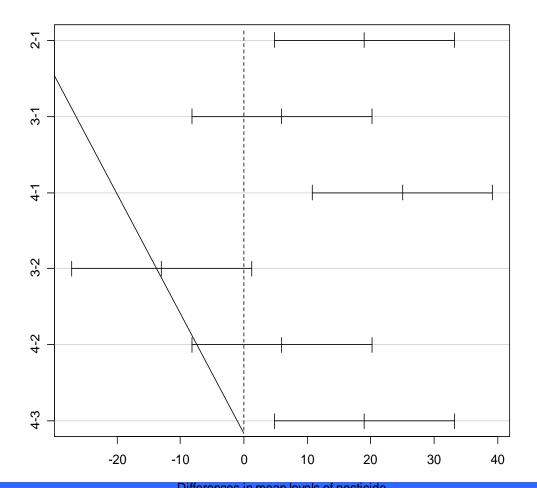
```
> TukeyHSD(analysis)
```

```
Tukey multiple comparisons of means
   95% family-wise confidence level
Fit: aov(formula = product ~ variety + pesticide)
$variety
    diff
               lwr
                      upr padj
2-1 9.75 -1.152093 20.65209 0.0749103
3-1 32.50 21.597907 43.40209 0.0002363
3-2 22.75 11.847907 33.65209 0.0016627
$pesticide
   diff
               lwr
                     upr padj
2-1 19 4.797136 33.202864 0.0140509
3-1 6 -8.202864 20.202864 0.5106152
4-1 25 10.797136 39.202864 0.0036109
3-2 -13 -27.202864 1.202864 0.0704233
4-2 6 -8.202864 20.202864 0.5106152
4-3 19 4.797136 33.202864 0.0140509
```

Multiple Comparisons

> plot(TukeyHSD(analysis), ordered=TRUE)

95% family-wise confidence level



Differences in mean levels of pesticide Workshop on Analysis of Clinical Studies – Can Tho University of Medicine and Pharmacy – April 2012

Latin-square ANOVA

Plot	Variety					
	1	2	3	4		
1	175	143	128	166		
	Aa	Ba	Bb	Ab		
2	170	178	140	131		
	Ab	Aa	Ba	Bb		
3	135	173	169	141		
	Bb	Ab	Aa	Ba		
4	145	136	165	173		
	Ba	Bb	Ab	Aa		

Latin-square ANOVA: summary

Plot	Variety					
	1	2	3	4		
1	175	143	128	166		
	Aa	Ba	Bb	Ab		
2	170	178	140	131		
	Ab	Aa	Ba	Bb		
3	135	173	169	141		
	Bb	Ab	Aa	Ba		
4	145	136	165	173		
	Ba	Bb	Ab	Aa		

Mean by variety	Mean by plot	Mean by method
1: 156.25	1 : 153.00	1 (Aa) : 173.75
2: 157.50	2 : 154.75	2 (Ab) : 168.50
3 : 150.50 4 : 152.75	2: 154.75 3: 154.50 4: 154.75	3 (Ba) : 142.25 4 (Bb) : 132.50
Overall mean:	Overall mean:	Overall mean:
154.25	154.25	154.25

Latin-square ANOVA by R

Plot	Variety					
	1	2	3	4		
1	175	143	128	166		
	Aa	Ba	Bb	Ab		
2	170	178	140	131		
	Ab	Aa	Ba	Bb		
3	135	173	169	141		
	Bb	Ab	Aa	Ba		
4	145	136	165	173		
	Ba	Bb	Ab	Aa		

y <- c(175, 143, 128, 166, 170, 178, 140, 131, 135, 173, 169, 141, 145, 136, 165, 173)

variety <- c(1,2,3,4, 1,2,3,4, 1,2,3,4, 1,2,3,4,)
sample <- c(1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4)
method <- c(1, 3, 4, 2, 2, 1, 3, 4, 4, 2, 1, 3, 3, 4, 2, 1)</pre>

```
variety <- as.factor(variety)
sample <- as.factor(sample)
method <- as.factor(method)</pre>
```

Latin-square ANOVA by R

latin <- aov(y ~ sample + variety + method)
summary(latin)</pre>

Df Sum Sq Mean Sq F value Pr(>F) sample 3 8.5 2.8 2.2667 0.1810039 variety 3 123.5 41.2 32.9333 0.0004016 *** method 3 4801.5 1600.5 1280.4000 8.293e-09 *** Residuals 6 7.5 1.3 ----Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Latin-square – Multiple Comparisons

> TukeyHSD(latin)

\$variety

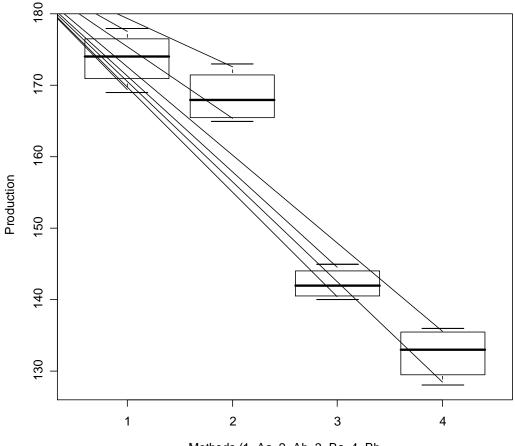
	diff	lwr	upr	p adj
2-1	1.25	-1.4867231	3.9867231	0.4528549
3-1	-5.75	-8.4867231	-3.0132769	0.0014152
4-1	-3.50	-6.2367231	-0.7632769	0.0173206
3-2	-7.00	-9.7367231	-4.2632769	0.0004803
4-2	-4.75	-7.4867231	-2.0132769	0.0038827
4-3	2.25	-0.4867231	4.9867231	0.1034761

\$method

	diff	lwr	upr	p adj
2-1	-5.25	-7.986723	-2.513277	0.0023016
3-1	-31.50	-34.236723	-28.763277	0.000001
4-1	-41.25	-43.986723	-38.513277	0.000000
3-2	-26.25	-28.986723	-23.513277	0.000004
4-2	-36.00	-38.736723	-33.263277	0.000000
4-3	-9.75	-12.486723	-7.013277	0.0000730

Graphical Analysis

boxplot(y ~ method, xlab="Methods (1=Aa, 2=Ab, 3=Ba, 4=Bb", ylab="Production")



Methods (1=Aa, 2=Ab, 3=Ba, 4=Bb

Cross-over Study ANOVA

Nhóm	Mã số bệnh nhân số	Thời gian (phút) ra mồ hôi trên trán		
	(id)	Tháng 1	Tháng 2	
АВ		Α	Placebo	
	1	6	4	
	3	8	7	
	5	12	6	
	6	7	8	
	9	9	10	
	10	6	4	
	13	11	6	
	15	8	8	
BA		Placebo	Α	
	2	5	7	
	4	9	6	
	7	7	11	
	8	4	7	
	11	9	8	
	12	5	4	
	14	8	9	
	16	9	13	

Cross-over Study ANOVA by R

- y <- c(6,8,12,7,9,6,11,8, 4,7,6,8,10,4,6,8, 5,9,7,4,9,5,8,9 7,6,11,7,8,4,9,13)

- id <- c(1,3,5,6,9,10,13,15, 1,3,5,6,9,10,13,15, 2,4,7,8,11,12,14,16, 2,4,7,8,11,12,14,16)

seq <- as.factor(seq)</pre>

period <- as.factor(period)</pre>

```
treat <- as.factor(treat)</pre>
```

```
id <- as.factor(id)</pre>
```

data <- data.frame(seq, period, treat, id, y)</pre>

Cross-over Study ANOVA by R

xover <- lm(y ~ treat + seq + period) anova(xover)</pre>

Analysis	of V	/ariance	Table								
Response:	У										
	Df	Sum Sq	Mean Sq	F value	Pr(>F)						
treat	1	16.531	16.531	4.9046	0.04388	*					
seq	1	0.031	0.031	0.0093	0.92466						
period	1	0.781	0.781	0.2318	0.63764						
id	14	103.438	7.388	2.1921	0.07711	•					
Residuals	14	47.187	3.371								
Signif. c	odes	5: 0 '*;	**' 0.001	L '**' O	.01 '*'	0.05	'.'	0.1	T	۲	1

Cross-over Study ANOVA by R

> TukeyHSD(aov(y ~ treat+seq+period+id))

```
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = y ~ treat + seq + period + id)
```

\$treat

	diff	lwr	upr	p adj
2-1	-1.4375	-2.829658	-0.04534186	0.0438783

\$seq

diff lwr upr p adj 2-1 0.0625 -1.329658 1.454658 0.924656

\$period

diff lwr upr p adj 2-1 -0.3125 -1.704658 1.079658 0.6376395